Faint Object Classification Using Artificial Neural Networks
نویسندگان
چکیده
منابع مشابه
Natural Object Classification Using Artificial Neural Networks
1 © British Crown Copyright 1999/DERA; Published with the permission of the controller of Britannic Majesty's Stationary Office ABSTRACT In this paper we apply artificial neural networks for classifying texture data of various natural objects found in FLIR images. Hermite functions are used for texture feature extraction from segmented regions of interest in natural scenes taken as a video sequ...
متن کاملProtein Loop Classification Using Artificial Neural Networks
We used Artificial Neural Network for protein loop classification based on amino acid sequence alone. A new algorithm recently proposed, the Hidden Layer Learning Vector Quantization (HLVQ) was used and its accuracy compared with traditional Multilayer Preceptrons (MLP). The HLVQ algorithm achieved superior accuracy correctly classifying most loops.
متن کاملClassification of Electroencephalogram Using Artificial Neural Networks
In this paper, we will consider the problem of classifying electroencephalogram (EEG) signals of normal subjects, and subjects suffering from psychiatric disorder, e.g., obsessive compulsive disorder, schizophrenia, using a class of artificial neural networks, viz., multi-layer perceptron. It is shown that the multilayer perceptron is capable of classifying unseen test EEG signals to a high deg...
متن کاملObject Classification using Deep Convolutional Neural Networks
The objective of this research project is to explore the impact on performance by varying architectures of deep neural networks. Deep neural networks have resurged in interest by researchers when, in 2012, Krizhevsky et al. submitted a deep convolutional neural network to the ILSVRC (ImageNet Large Scale Visual Recognition Challenge) and achieved significantly-higher results than the entire com...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symposium - International Astronomical Union
سال: 1994
ISSN: 0074-1809
DOI: 10.1017/s0074180900047409